Processing math: 100%

dzastina121212

wykaz ze okregi o rownaniach x^2+y ^2=1 i (x-3)^2+y^2=4 sa styczne

+0 pkt.
Odpowiedz

Odpowiedzi: 2

about 14 years ago

{x2+y2=1(x3)2+y2=4 {y2=1x2(x3)2+y2=4 (x-3)^2 + 1-x^2 =4 x^2-6x+9 + 1-x^2 =4 -6x+10 =4 -6x =-6 x = 1 y^2=1-x^2 y^2=1-1^2 y^2=1-1 y^2=0 y=0 {x=1y=0 x i y to współrzędne punktu który jest wspólny dla obu okręgów. Jeśli wyszedł jeden taki punkt (u nas ma on współrzędne P=[1;0]) to znaczy, że te okręgi są styczne. _____________________________________________________________________________ proszę bardzo, pozdrawiam :)

peels

Newbie Odpowiedzi: 6 0 people got help
about 14 years ago

oj, przepraszam... wyżej nie wyszło za bardzo, więc dam link, gdzie wszystko jest po kolei wytłumaczone dwoma sposobami :) http://www.trudne.pl/zadanie/156199/?wykaz-ze-okregi-o-rownaniach-x2-y21-i-x32--y24-sa-styczne/

peels

Newbie Odpowiedzi: 6 0 people got help

Najnowsze pytania w kategorii Matematyka

Ładuj więcej

Askly Ranking

Ranking unavailable for selected time period